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The equations of incompressible laminar boundary layer, vortex, and axisymmetric 
wake/jet flows are solved by the method of weighted residuals using exponentials in both 
approximating and weighting functions. AU formulations are written for arbitrary 
unspecified order N of approximation. Two particular formulations of velocity and 
circulation profiles are used--one comaining a power series modified by an exponential, 
the other a series of exponentials. The exponential series method is found to be superior 
to the power series formulation with respect to convergence, reliability, and ease of 
application. It produces accurate and apparently convergent results for relatively small 
computing effort. Results are presented for the transition of the asymptotic suction to 
the Blasius profile, for the circular cylinder, and for typical vortex flows. Extensions 
to compressible and turbulent flows are possible. 

I. INTRODUC~~N 

A large and important group of two- and three-dimensional fluid dynamic 
problems is governed by parabolic approximations to the Navier-Stokes equations 
in two independent variables. Among these are the plane boundary layer flow, 
wake, and jet, the yawed (three-dimensional) boundary layer, wake, and jet, and 
the axisymmetric boundary layer on a body of finite radius (by Mangler’s trans- 
formation), the axisynunetric wake, jet, and boundary layer on a needle, the quasi- 
cylindrical vortex, and the boundary layer on a spinning needle (see Table I and 
Fig. 1). 

Methods of weighted residuals based on the work of Gale&in [l] and 
Kantorovich [2] (here briefly “integral methods”) for the computation of some of 
these flows will be described. The laminar incompressible case will be considered 
throughout, but the methods can be extended to compressible and/or turbulent 
flows. 
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TABLE I 

Flows Described by Boundary-Layer Type Partial Differential Equations in Two Coordinates 

Boundary Layer Wake/Jet 

carteaian 
case 

2dimemional 
velocity vector 

u = u(X,Y) 
0 = 0(&Y) 

Plane boundary layer 

u(x, 0) = 0 
4% 0) = WI 

by Mangler tramfommtion 
3dimensional 
axisymmetric boundary 
layer for r > 6 

Plane wake/jet 

UJX, 0) = 0 
ufx, 0) = 0 

3dlQEhOIld 
velocity vector 

u = u(X,Y) 
IJ = 0(-&Y) 
w = w(-%Y) 

Boundary layer on yawed 
infinite cylinder 

u(x, 0) = 0 
a. 0) = vow 
w(x, 0) = 0 

Yawed infinite 
wake/jet 

4x, 0) = 0 
v(x, 0) = 0 

W”(X, 0) = 0 

A -_ ‘c 2dillE&OIli3l Boundary layer ih&mmetric 
case velocity vector on needle wake/jet 

u = u(x, r) ufx, 0) = 0 4(x, 0) = 0 
tl = c(x, r) dx, 0) = a&~ v(x, 0) = 0 

3dimmsional 
velocity vector 

u = u(x, r) 
v = u(x, r) 
w = w(x, r) 

Bonndary layer on 
spinning needle 

ufx, 0) = 0 
4% 0) = &J(x) 
w(x, 0) = 0 

Quasicyiindrical 
vortex 

l4.k 0) = 0 
u(x, 0) = 0 
w(x, 0) = 0 

Finite di&rence methods for the accurate calculation of these parabolic flows 
are well-developed. Yet the prospect of greater computing economy has kept 
interest in integral methods alive, if just barely. It is well to recall some short- 
comings of traditional integral methods, such as the Karman-Pohlhausen [3] and 
Walz and Thwaites methods [4,5]: 

Limitation to one-parameter family or similarity profiles; 
Inadequate accuracy of local results (the velocity profile), while overall results 

(ww&ar, displacement and momentum thicknesses) are usually adequately 
. 

Use of ‘empirical constants; 
Integration in a region with vaguely defined upper boundary 6 (boundary layer 

thickness). 
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CARTESIAN CASE AXISYMMETRIC CASE 

FIG. 1. Camiinates and vebcities. 

In the past decade, Dorodnitsyn [6] and his coworkers (see survey in [7]) have 
formulated integral methods for boundary layer flows which do not sulfer the 
shortcomings cited above and which have put integral methods into direct com- 
petition with finite difference methods. Bethel [8,9] has thoroughly investigated 
the Dorodnitsyn method by computing many test cases and comparing them to 
exact results obtained by other methods. He was able to show that in most cases 
the method appears to be converging to the correct solution as the number of 
parameters in the approximating function is increased. However, in a few cases 
the method evidently converges to an incorrect solution. Some objections to the 
method can be raised: 

By using the velocity u as independent variable, the shear prolile is approximated 
by powers of U. It is questionable whether powers of some velocity pro8les (e.g., 
separation profile) will correspond to a complete set yielding uniform approxima- 
tion of the shear profile. 

Different approximating functions must be used in regions of accelerated and 
retarded flow. 

The formulation cannot handle velocity overshoot (in one integration). 
Special methods are required for dealing with elliptic integrals occurring for 

N 2 4. In the case of retarded flow numerical integration becomes necessary. 
The excellent results obtained by the Dorodnitsyn method encouraged a search 

for related methods which would not have the shortcomings just listed. The ulti- 
mate aim must be the development of integral methods yielding solutions con- 
verging to the exact solution as the number of parameters is increased, and giving 
reliable engineering estimates for low orders of approximation and small invest- 
ment in computing time. 
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Results of studies of integral methods for boundary layer and vortex flows, and 
related flows where flow variables are functions of only two independent variables, 
are reported here. The exponential character of the distributions of the indepen- 
dent variables through the shear regions of the flows considered leads to the adop 
tion of approximating functions containing exponentials. On mathematical 
grounds, two particular formulations appear particularly well-suited, and are 
considered further. They lead to two distinct integral methods, one using a power 
series modified by an exponential, the other a series of exponentials. Results of 
these methods for boundary layer, wake, jet, and vortex flows will be presented. 
Best results are obtained with the exponential series method. 

II. GENERAL METHOD AND GENERAL FORMULAE 

The general integral relations for incompressible plane boundary and wake/ 
jet flows and for vortex and axisymmetric wake/jet flows will first be derived 
without reference to any particular approximating or weighting functions. Spec& 
approximating and weighting functions will be introduced in the following section. 

In the boundary layer case it is clear that transformations such as Mangler’s and 
standard compressibility transformations can be applied to obtain corresponding 
axisymmetric and compressible flows. This will not be pursued further. 

A. Plane Boundary Layer and Wake/Jet Flow 

The nondimensional incompressible boundary layer equations are, in divergence 
form, 

a(Lre)+m= 
ax ay 

*, due I a=u 
dX ays 

The boundary conditions for the boundary layer case are 

u(x, a) = u,(x) 
U(0, Y) = initial profile. 

In the case of the plane wake/jet the boundary conditions are 

g (X, 0) = 0 (symmetry) 

V(X, 0) = 0 

WK 00) = u&o 

U(0, Y) = initial profile. 
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Nondimensional and physical variables are related by 

where Re = u,l/v. 

x = x/l, 

Y = dRe y/l, 

u = u/u, ) 

V = fie v/u, , 

It is often desirable, for numerical or analytic reasons, to keep variables in the 
flow calculation of approximately constant magnitude (or exactly constant in 
similarity cases). A transformation will now be introduced which scales the in- 
dependent variable Y according to a prescribed function g(X). It should be noted 
that this transformation is introduced solely for computational convenience. The 
choice of g(X) is not critical, and in fact in many cases (e.g., circular cylinder) 
g(X) = 1 is a perfectly satisfactory choice. 

Introduce the transformed coordinates 

P = F//g(X) X=X 

and the transformed velocities 

The transformed nondimensional incompressible plane boundary layer equations 
then become 

The boundary conditions transform correspondingly. 
To obtain the general integral relations, the momentum equation is multiplied 

by members of a set of linearly independent weighting functions &(Y). Conver- 
gence of the integrals requiresf,(O) = finite and&(a) = 0. 
The integral relations become 

(1) 

For the boundary layer case, 
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and for the plane wake/jet, 

The integral relations can be integrated in the Ydirection once choices of weighting 
functions fk( n and of the velocity approximation U(X, jr) have been made. The 
integral relations then reduce to a set of ordinary differential equations for the 
X-dependent parameters in the velocity approximation. The velocity V(X, Y) 
follows from the continuity equation. For the boundary layer, with prescribed 
suction or blowing velocity V,(X), 

and for the plane wake/jet: 

Alternately a streamfunction could have been introduced, but the required amount 
of algebra is equivalent to that of the present formulation. 

B. Vortex and Axisymmetric Wake/Jet 

The axisymmetric wake and jet are special cases of quasicylindrical vortex flow. 
Corresponding solutions are obtained by specifying zero swirl in the vortex 
formulation. With this in mind, only equations for the more general vortex flow 
case will now be developed. 

With the coordinates and velocities of Fig. 1 the dimensional equations des- 
cribing incompressible quasicylindrical vortex flow are 

g+g+;=o, 
W’ 
-= 1 9 

r 
--, 
P ar 

au au 
uaX+v&=-pax '2+~(2L+i~), 

ug+v?E+y+e+!+$). 

The equations are simplified by introduction of the following transformation of 
variables: 

y = P/2, 
h = or, 
k = wr (circulation). 
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In addition the equations are nondimensional&d by introduction of a Reynolds 
number Re = u,gJv based on freestream (axial) velocity and a representative 
vortex core radius rc . We use 

X = x/r, , 

R = x6 (r/rJ, Y = Re(v/re$), 

u = u/u, ) 

V = 4% (v/u,), H = Re(h/u,rJ, 

w = w/u, , K = & (k/u,rJ. 

p = Pl(p~mW, 

The nondimensional vortex equations then become 

g+g=o, 
K2 i?P -=- 

4YB aY’ 

u au =+Hg= -g+2&(Yg), 

aK aK a8K 
uax+Hm=2Yayt’ 

with the boundary conditions 

g (X, 0) = 0 (symmetry), 

H(X, 0) = 0, 
K(X, 0) = 0, 

ax, 0) = U*(X), 

U(0, Y) = initial profile, 
KG’, 4 = W3, 
K(0, Y) = initial profile. 

The pressure P is eliminated by crossdiffetentiation, and H is found by formal 
integration from the continuity equation, 

Hz- 
I ‘EdY. 

o ax 
Two equations remain 

&(yK)+$(HK-ZYg+ZK)=O 

and 
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The last equation has been multiplied by Y2. (This amounts to applying the weight- 
ing functions ( Y2fk( Y)}). Weighting functions gx( Y) andf’( Y) are now introduced 
with the requirements g,(O) = finite, gL(co) = 0; fj(O) = finite, &(co) = 0. 
Multiplication of the two equations by gk and fk , respectively, and integration 
results in the two integral relations, 

d m 
- 1 
dx o 

&UK dY - jrn g,‘HK dY - lrn (2g;Y + 4gk’) K dY = 0 
0 0 

and 

d m 
- j 
dx o 

Cfk’Y2 + 2&Y) u2 dY - $ f= fk 5 dY 
0 

- 

s 
m(f;Y2 + ‘tyf; + 2fk) HUdY 
0 - I m (2f;Y3 + 14f;Y2 + 2Of’Y + 4f) UdY = 0. 
0 

(2) 

After introduction of weighting functions fk and g, and of approximating expres- 
sions for velocity and circulation profiles U(X, Y) and K(X, Y) two sets of ordinary 
differential equations are obtained for the X-dependent parameters of the velocity 
and circulation approximations. 

In the vortex case a pseudosimilarity transformation is not required because the 
vortex core remains of approximately constant diameter in the quasicylindrical 
case for which these equations are valid. 

C. Determination of Parameters 

We are here interested in integral methods where the unknown parameters in 
the approximating expressions are all or in part determined by weighted residuals. 
Remaining parameters may be found from applying compatibility conditions at 
the boundaries, as in the Karman-Pohlhausen method. The use of compatibility 
conditions should be carefully considered, since they may have catastrophic effects 
on the total flow where boundary conditions are discontinuous (e.g., suction). For 
this reason all parameters in the present methods are determined by weighted 
residuals. 

III. APPROXIMATION USING EXPONENTIALS: INI% PROFILES 

A. Choice of Weighting and Approximating Functions 

Suitable weighting and approximating functions must now be chosen in order 
to permit analytical integration, with respect to Y, of the integral relations derived 
in the previous section. 
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Weighting functions chosen for the integral relations of the previous section must 
satisfy several requirements: (1) the members of each set { fh( Y)} and (gis( Y)} must 
be linearly independent; (2) the& andg, must result in convergent integrals; (3) they 
should insure analytical integrability; (4) the functions should weight most heavily 
the region in which the solution is being sought, i.e., the shear region near Y = 0. 
The requirements are satisfied by the set {e- U(k)YYm} subject to a proper choice of 
approximating functions to satisfy the third condition. Note that the choice {e-“‘} 
corresponds approximately to the weighting function set ((1 - z@} used by 
Dorodnitsyn [6]. 

The choice of approximating functions is guided by the experimentally observed 
behavior of boundary layer, wake/jet, and vortex flows, and by a few exact solu- 
tions. All of these flows have an exponential character. It is thus logical to choose 
approximating functions containing exponentials. Extremely simple integrals of 
the form, 

I 

co n. I e-ayyn dy = 
0 

ol”+l’ 

result from adopting elements of the set {e-aYY”} for use in the approximating 
functions also. We require expressions of the series type and have as the most 
general candidate, 

This expression could probably lead to good approximation using only very few 
terms, but its use requires more complicated algebra than the following two special 
cases: 

and 

R 

These two-one involving a power series in Y, the other a series of exponent& in 
Y-appear more promising and will be used in the present work. 

The lust expression is nonlinear. While it appears to be capable of adequately 
representing most of the desired profles, clearly the role of the exponent a is an 
important one, and the accuracy of the approximation for a given ZV, and possibly 
the convergence, will depend on it. In the light of this it is doubtful whether the set 
is complete for general a. The maxima of the functions in the set are at Y = n/a. 
When a is small, it is unlikely that functions with rapid changes near Y = 0 can 
be properly approximated. 

The second expression is linear in powers of e -=9 If a coordinate transformation 
q = eAaY is introduced, it is clear that we are dealing with a polynomial expression 
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in a finite interval 1 > 7 > 0 (corresponding to 0 < Y < co). The polynomial set 
is complete, and uniform approximation for any continuous function in [l, 0] 
follows by Weierstrass’ theorem. Corresponding orthonormal functions are the 
shifted Legendre polynomials in [0, 11. This observation is reassuring; however, it 
still does not prove convergence of the complete integral method. 

In the following, integral methods using the two approximations above will be 
developed. The first will be referred to as the power series method, the second as 
exponential series method. Before we attempt to solve the flow equations, it is 
worthwhile to investigate the approximation characteristics of both methods. A 
procedure is required anyway for fmding the initial parameters for given arbitrary 
initial profiles. 

B. Approximation by Weighted Residuals-General Method 

The N unknown coefficients in the velocity approximation are here determined 
by requiring the integral of the weighted difference (residual) between exact and 
approximate velocity profile over the region (0, cc) to vanish for N different choices 
of (linearly independent) weighting functions. In the case of the exponential series 
method with fk = e-kar, this amounts to a least squares approximation in the 
region (0,l) of the 7 domain. Thus, if U(Y) is the exact, U,( Y; an) the approximate 
profile, and fk( Y) the weighting function, then the a, are here obtained from 

I :fk(r)[u(y) - uiv(Y; %)I dY = 0, k = 1, 2,..., N. (3) 

(One more equation is required if OL is an unknown parameter, as in the power 
series method as used here.) The quality of the approximation can be judged from 
the error distribution U(Y) - U,(Y) = e(Y). A single number is more convenient 
for an appraisal of error magnitude, such as the mean square error 

E = j-W @(I-) dY = I- [U(Y) - UdY)]” dY. 
0 0 

For a convergent method we must have E + 0 as N + 00. 
We shall now test the approximation methods by applying them to a ramp 

profile [U = Y (0 < Y < 1) and U = 1 (Y > 1)], where analytical integration is 
possible, and the error E can be computed exactly. This will provide some insight 
into convergence properties of the approximation. 

C. Approximation by the Power Series Method 

The approximation for the boundary layer profile in the power series method is 

U(y) = u, + e-9 2 %Y”, 
n4 

(4) 
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where 01 and the a, are undetermined parameters with a, = - U, . This formulation 
satisfies the boundary conditions and contains the asymptotic suction profile as an 
exact solution for a, = 0, n > 1. Weighting functions &( I’) = e-“(k)u were used 
in Eqs. (3). In this formulation a system of (N + 1) nonlinear equations must be 
solved simultaneously for LY and the N unknown parameters a, . 

Convergence properties are illustrated by the results of the analytical integra- 
tions for the ramp profile. Figure 2 shows the mean-square-error E as a function 
of the order of approximation N. Integer weighting function exponents 
u = 1, 2,..., N + 1 were used in these calculations, but the error E is hardly 
a&cted by the choice of weighting function exponents in the range from 0.1 to 10. 

10-I I I I I I I I I I 

10-5 I I I I , I I I I 

0 1 2 3 4 5 6 7 6 9 10 

ORDER OF APPROXIMATION, N 

FJIG. 2. Mcan-squareerrorin the approximation of a ramp profile bythepower seriesmethod. 

D. Approximation by the Exponential Series Method 

In the exponential series method, the boundary layer velocity profile is approxi- 
mated by 

U(Y) = (1 - e-9 (5) 

where the a, are the parameters to be determined, and 01 is a constant of the order 
of the exponent of the asymptotic suction profile having the same displacement 
thickness. The formulation satisfies the boundary conditions and contains the 
asymptotic suction profile as an exact solution for a, = 0, n >, 1. Again weighting 
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functions fk( Y) = e-o@JY are used to obtain the N unknown parameters a, from 
Eqs. (3). Substitution of the velocity approximation into Eqs. (3) leads to a least- 
squares approximation and a set of simultaneous linear equations which are solved 
for the a, by Gaussian elimination. 

The ramp case was again employed to confirm the theoretical convergence 
properties of the approximation by computing the mean-square-error E exactly. 
The results for 01 = 1 are plotted in Fig. 3. Again integer weighting function 
exponents u = 1,2 ,..., N were used. 

FIG. 3. 
method. 

10-I I , , , , , , , , , 

w 
_ 10-Z - 

8 

i 

g 10 -3 _ 

5 

iTI 

f 
N 

w 10-4 - u = (1 - e-Y)2 y-““Y 
I n4 

fk = .-kY ; k = l,.?,...N ; (t = 1 

10-S I I I I I I I I , 

012345678 9 10 

ORDER OF APPROXIMATION, N 

Mean-square error in the approximation of a ramp profile by the exponential series 

E. Comparison and Discussion 

We compare the profile approximations by the power series method (Fig. 2) and 
the exponential series method (Fig. 3). Both methods are clearly capable of approxi- 
mating the representative velocity protiles very well. However, the behavior of the 
power series method is more erratic than that of the exponential series approxima- 
tion, and the occasional appearance of divergent solutions foreshadows similar 
problems in the full integral method. It will also later be shown that the full integral 
method using power series approximation generally fails to duplicate the local 
accuracy of the present profile approximation. 

The power series and the exponential series approximations will now be intro- 
duced into the integral relations for the boundary layer and for vortex flows (with 
wakes and jets as special cases). All methods were developed, like the correspond- 
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ing profile approximations by weighted residuals, for arbitrary unspecified order 
of approximation N. 

IV. APPLICATION OF THE POWER SERIES METHOD 

A. Boundary Layer Flow 

The velocity approximation in the power series method is (with a, = -U,) in 
the boundary layer case, and u,(X) free in the wake-jet case, 

U(X, Y) = U,(X) + e-atXbY s 43(X> Y” 

Note again that here a(X), in addition to the a,(X), is one of the undetermined 
parameters. The weighting functions 

fk( Y) = e+tkjy, k = 1, 2 ,..., N + 1, 

are chosen as for the profile approximation. They satisfy the previously stated end 
conditions with fk(0) = 1, and&(a) = 0. 

Introduction of these functions into the general integral relations for the bound- 
ary layer yields a system of (N + 1) first-order ordinary nonlinear differential 
equations for a(X) and the a,(X). The system is linear in the derivatives and can be 
solved by standard procedures such as the Runge-Kutta method. A computational 
singularity appears when aN -+ 0. 

A typical-and disappointing-result of the method is that for the flat plate. 
Constant suction over an infinitely long plate is discontinued at X = 0, and the 
asymptotic suction profile should develop into the Blasius profile. Displacement 
thickness and wall-shear development are as expected and check with other solu- 
tions, but the computed profile definitely converges to a wrong solution. Higher 
orders of approximation yield practically the same result. If the computation is 
started with the Blasius profile as initial profile (parameters obtained by the 
methods of Section III) violent gradients appear in the Grst few steps and all para- 
meters undergo drastic changes until the profile has again adjusted to the incorrect 
shape. 

These results are distressing especially in view of the fact that the profile approxi- 
mation by the power series method proved to be very accurate. For a reason which 
is not obvious, and in contrast to the corresponding protile approximation, the 
boundary layer profile is described mainly by the exponent Q(X); that is the zeroth- 
order approximation of asymptotic suction type. or(X) has a correspondingly low 
value and the correction terms of order two and higher peak outside of 
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the boundary layer (at Y = n/a). It was noted in the section on profile approxima- 
tion by the power series method that accurate approximation is then apparently 
not possible. By contrast in the initial profile approximation using the same func- 
tions, the resulting a(X) for the Blasius profile is much higher. It increases with N, 
giving maxima of the first ten or so correction terms within the boundary layer, i.e., 
in the region where they are needed most, and the approximation becomes very 
accurate. We conclude again that the approximating set is not complete and that 
the quality of the approximation is a function of the exponent CX(X). A consequence 
is that it should be possible to improve the approximation by forcing a large CY, 
perhaps by simply keeping it constant at a sufficiently high value. A related possi- 
bility will now be discussed. It might be added that weighting function effects were 
studied by using weighting function exponents in the range 0.01 < u < 10, and 
by using the set Yze-u~T No improvement could be obtained. Extreme u can be 
expected to produce poor results if the region of interest is not adequately 
“covered.” 

The possibility of fixed LY has been explored by Devan [lo]. Here we will now 
keep a free LX(X) in the dominant term of the velocity approximation, while using 
a constant, and preselected, exponent y on all higher order terms. Thus, we use the 
velocity approximation, 

U(X, Y) = U,(X)(l - e-acrJr) + e+* i G(X) Y*, 
iI-=1 

retaining the same weighting functions as before, i.e.,fk( Y) = e+k)y. The transi- 
tion from the asymptotic suction to the Blasius case was again investigated. Com- 
putations with low (~2) and high (>3) values for y broke down relatively soon. 
Long runs and accurate results were obtained for y w  2S(N = 3), see Fig. 4. 

Some conclusions can be drawn. The integral solution based on the power series 
velocity approximation can be useful and accurate, but only if exponents OL (or y) 
are relatively high. Unfortunately, the power series method with velocity profile (4) 
yields an exponent a(X) which is too low to permit accurate approximation of the 
velocity profile by the correction terms used. A tied (high) exponent might give 
good results, but corresponding calculations often break down for obscure reasons. 
On the whole, this approach was found to be troublesome and unreliable, and 
despite considerable effort and some successes, no standard computing technique 
could be developed. The power series method could be used if only overall charac- 
teristics of the boundary layer are sought. Rapid estimates will result for N = 
1 or 2. 

B. Vortex and Axisymmetric Wake/Jet 

Thepower seriesmethod was first used to calculatequasicylindrical vortexflowsfor 
different swirl values [l 11. The integral relations (2) for quasicylindrical vortex flow 
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” P O,(l - c-q + .3- z “,Y” 

n-1 

fk - e -g (k) Y  ; o(k) - O.Z(1,2,...rN+l) 

(I frae : y = 2.2 : N = 3 

’ / 'hSYNPTwrIc S"cTION 

0.2 0.4 0.6 0.8 3 
VELOCITY, Ulv, 

FIG. 4. Transition from the asymptotic suction to the Blasius profile by the modified power 
s&s method. 

are analytically integrated in the Y direction by taking the velocity approximation, 

U(X, Y) = U,(X) + e-cl(x)y k a,(X) y*, 
n4 

where so(X) is now left free to adjust itself and permit nonzero velocity on the axis; 
and the circulation approximation, 
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where b,,(X) = ---K,(X) to enforce solid rotation at the axis, as required in viscous 
vortex flow. The weighting function sets were {glc(Y)} = {fk(Y)} = {e-“r}. 

Results for a typical case and N = 2 are presented in Fig. 5. These results were 
later checked by the exponential series method for N = 2. Results from the two 
methods agree quite well, with a maximum difference of about 3 %. 

The computational experience with this method was similar to that for the 
boundary layer flow. Although large gradients exist near the vortex breakdown 
point, the program often calculated through the breakdown point into the reversed 
flow region. More details of the application of the power series method to vortex 
flows are reported in [!I 1. 

5 

0 I I I I 
0 0.4 08 12 1.6 2.0 0 0.4 0.8 1.2 1.6 

AXIAL VELOCITY, U/U, SWIRL VELOCITY, W/U, 

FIG. 5. Vortex velocity profil developement by the power series and exponential series 
methods. 

V. APPLICATION OF THE EXPONENTIAL SERIES METHOD 

A. Bounc&.zry Layer Flow 

In the exponential series method, the velocity approximation, (Eq. 5) 

U(x, Y) = (1 - e-q (u,(X) + ,c: a,(X) e-y), 
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(a fixed) and the weighting function set, fk( Y) = e”(Qr, are substituted into the 
general integral relations for the boundary layer Eqs. (1). This leads to N first- 
order ordinary differential equations for the parameters a,(X). They have the form 

n$ d,& = Dk , k = 1, 2 ,..., N. (6) 

TABLE II 

Nondimensional Wall Shear, Displacement and Momentum Thicknesses, 
and Separation Point for Flow Over a Circular Cylinder. 

Dimensional values for U = 2 sin(x/R): 
79 = (pWz/ii/d/Rem) T, , 

8, = (R/z/i& 42) A, , 8, = (R/%&ii z/z) A,. 

xlR 
Integral Method 

N=l N=2 N=3 N=4 N=5 Terrill 

0.3 

0.5 

0.8 

1.0 

1.2 

1.5 

1.6 

1.78 

1.8 

T, = 0.36114 
A, = 0.88898 
A, = 0.45888 

0.56106 
0.91486 
0.46920 
0.74721 
0.97919 
0.49292 
0.77440 
1.03985 
0.51275 
0.71764 
1.11501 
0.53393 
0.49285 
1.25296 
0.56299 
0.39128 
1.30427 
0.57056 
0.19541 
1.40012 
0.58001 
0.17362 
1.41086 
0.58068 

0.35810 
0.70331 
0.34252 
0.55985 
0.73161 
0.35794 
0.75965 
0.80794 
0.39779 
0.80386 
0.88995 
0.43760 
0.76592 
1.00995 
0.48983 
0.53383 
1.32595 
0.59056 
0.39024 
1.51849 
0.62470 

0.35685 0.35669 0.35686 0.3569 
0.66239 0.65270 0.65444 0.6595 
0.30034 - 0.29210 0.2971 
0.55750 0.55751 0.55755 0.5575 
0.68709 0.67132 0.67616 0.6813 
0.31247 - 0.30111 0.3061 
0.75527 0.75516 0.75508 0.7550 
0.75485 0.72701 0.73668 0.7408 
0.34551 - 0.32633 0.3303 
0.79895 0.79823 0.79802 0.7979 
0.82882 0.78929 0.80369 0.8057 
0.38093 - 0.35397 0.3560 
0.76396 0.76147 0.76113 0.7611 
0.93859 0.88494 0.90516 0.9031 
0.43151 - 0.39498 0.3927 
0.56107 0.55052 0.55159 0.5520 
1.22870 1.15803 1.18427 1.1685 
0.54860 - 0.49940 0.4826 
0.45109 0.43531 0.43901 0.4396 
1.39362 1.32506 1.34692 1.3241 
0.60174 0.52212 0.55283 0.5281 
0.15232 0.11245 0.15597 0.1540 
2.06510 2.04425 1.91493 1.8916 
0.70531 0.67719 0.68607 0.6455 

(0.07850) 0.10914 0.1049 
(2.44765) 2.04538 2.0326 
(0.70442) 0.704oo 0.6628 

x.lR (1.967) (1.675) (1.801) u.805) 1.8252 1.823 
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The coefficients C,,,, and Rn appear as 

and 

Dk = 5 ad%, I), 

where u&Y) = U,(x). The coefficients P and Q are functions of n, Z, the constant 
weighting function exponents u(k), and the constant exponent 0~. Thus they must 
only be determined once at the beginning of the calculation, in contrast to the 
power series method where the changing CL(X) requires recomputation of similar 
coe5cients at each step. Computation of the coefficient matrices [&] and [Ok] in 
the exponential series method therefore turns out to be a very e5cient operation. 
Since this step is repeated several thousand times in a typical calculation, the 
advantage is obvious. 

The tit-order system (6) is solved for the d, by Gaussian elimination, and the 
system for the u,,(X) is then integrated by standard numerical methods for the 
solution .of ordinary differential equations. With few exceptions a fourth-order 
Runge-Kutta technique was used. lj@al boundary layer calculations take from 
about 30 set (for N = 2) to 5 min (for N = $) on a IBM 360/75 computer. 

Table II presents results for the circular cylinder for OL = 1 and N = 1 to 5. The 
calculations wcrc started at X = 0.1 with the stagnation point profile. The table 

1 

ORDER OF APPROXIMATION, N 
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compares results for wall shear, displacement thickness and momentum thickness 
for the different N to the results computed by Terrill [12]. It is seen that these 
characteristics of the boundary layer are accurately computed. The apparent con- 
vergence of these quantities for increasing iV is shown in Fig. 6. The question 
remains of whether the solution converges to the correct velocity profile, and Fig. 7 
compares velocity profiles at X = 1.0, 1.5, and 1.78 obtained for different N to 
those computed by Terrill. It is interesting to note that for N = 1 the program 
integrated right through the separation point into the separated region. At higher 
Nlarge gradients cause failure of the calculation very close to the separation point. 

0.4 0.6 

VELOCITY, U/U, 

0.8 

FIG. 7. Velocity profles on the ciradar cylinder by the exponential series method. 
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The results point to convergence of the method to the exact result as N is in- 
creased, but no analytical and general proof exists presently. Another observation 
supporting convergence is the fact that for given N, and a given similarity profile, 
both the initial profile approximation (which is convergent as explained earlier) 
and the full integral relation routine appear to result in the same parameters (minor 
differences exist, but these are probably the result of the numerical integration 
in the initial profile routine). In contrast, completely different parameters resulted 
in the power series method. 

Unlike the power series method, application of the exponential series method 
has been found to be virtually troublefree. Singular behavior does not appear, 
except where the boundary layer equations themselves break down, as at the flat 
plate leading edge or at the separation point. As usual, smaller step sizes have to 
be taken where gradients are large, as near the flat plate leading edge. This leads 
to increases in computing time there, especially for higher orders N of approxima- 
tion. Discontinuous external flow parameters (discontinuous suction, discon- 
tinuous pressure gradient) cause no problems. 

In the plane wake/jet calculations, one more free parameter U,,(X) is added by 
using the velocity approximation, 

U(X, Y) = (1 - e-my) [V,(x) + 2 u,(X) e-may] + e-aYUo,(X), 
n=l 

where U,, is the velocity on the axis. 

B. Vortex and Axisymmetric Wake/Jet 

The exponential series method was applied to the integral formulation of quasi- 
cylindrical vortex flow Eqs. (2). These relations were integrated by applying the 
velocity approximation, 

U(K Y) = (1 - e-9 U&U + 5 4x) 
[ 

eday 1 + UJX) e-ay, 
984 

the circulation approximation, 

K(X, Y) = (1 - e-Q3 
1 
K,(X) + 5 b,(X) e-nay 

I 
, 

n=l 

and the weighting function sets, 

fn(Y) = e-kY, k = 1, 2 ,..., N + 1, 

gz(Y) = e-“=, I = 1, 2 ,..., N. 

In the IV-th order approximation a system of (2N + 1) first-order ordinary differen- 
tial equations results for the parameters U, , CI, and b, . The equations are inte- 
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grated in the same manner as the boundary layer case. In particular, the coefficient 
matrices again depend mainly on numbers which are determined once at the 
beginning of the calculation. 

Results of computations with 01 = 1 and N = 2,3,4 for a vortex of medium 
swirl are shown in Fig. 8, which depicts its development in a zero pressure gradient. 

i( = WR = (l-c.-"*) ; bne-"aY 
n=o 

fk = ,-kY; k = l,Z,...,N+l. 

9i = .-LY; I = 1,2,....1 

cl=1 ; ue = 1; Ke - 1.B 

0 0.4 0.8 1.2 1.6 

AXIAL VELOCITY, U/U, SWIRL VELOCITY, W/U, 

FIG. 8. Vortex velocity profile development by the exponential series method for initial 
uniform axial velocity. 

In interpreting the results one should keep in mind the coordinate transformation 
introduced earlier in the vortex equations. For a typical core Reynolds number of 
104, a nondimensional distance Ax = 0.01 corresponds to a physical distance of 
the order of the core thickness. 

The vortex computations proceed smoothly and troublefree except in those 
cases where large initial swirl values, or adverse pressure gradients, or both, cause 
vortex breakdown. In these situations the quasicylindrical vortex equations are no 
longer valid, as shown in [13]. Typical computing times were of the order of 20 set 
(N = 2) to 1 min (N = 4) on the IBM 360/75, i.e., shorter than for the average 
boundary layer program by the exponential series method on account of lesser 
gradients and larger possible step sizes. Exact checks of the method were not 
possible due to lack of published solutions. Hall’s [14] calculations cannot be 
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duplicated since he prescribes the shape of an outer stream surface, while the 
present method treats the free vortex. Where results can be compared, they appear 
to agree. A second independent check is by comparison with the results of the 
polynomial method. The close agreement was noted earlier. Finally, the apparent 
convergence of the solutions for increasing N and the success of the formulation 
in the boundary layer case are reassuring. 

VI. SUMMARY AND CONCLUSIONS 

Integral methods for the computation of laminar incompressible plane boundary 
layer and wake-jet flows, and for vortex and axisymmetric wake/jet flows were 
formulated, and typical results of computations were presented. These methods 
used exponentials in both the approximating and weighting functions. This choice 
was based on the known exponential behavior of the solutions and on the sim- 
plicity, analytical integrabihty, and convergence of resulting integrals. 

Two different approaches were developed. One, the power series method, uses 
the formulation, 

e-=(x)y C a,(X) Yn, 
R 

in the velocity approximation. The other, exponential series method, employs the 
sum, 

; G,(X) e-any, 

in the formulation. Both approximations can handle all physically possible flow 
proflies, including those with overshoot and flow reversal. The properties of these 
approximations were discussed, a method of profIle approximation was described, 
and results were presented. Both methods can approximate typical velocity pro- 
files (Blasius, stagnation point, and separation), and an extreme case (ramp 
profile) quite well with very small error even for low orders of approximation. 
Furthermore, the approximations appear to converge as N increases. However, on 
theoreticsll grounds, objections were raised to the power series formulation, while 
the exponential series approximation was shown to amount to series expansion (in 
a transformed &rite region) of the velocity profiles in terms of shifted Legendre 
polynomials. Convergence for N + co then follows for continuous velocity 
profiles by Weierstrass’ approximation theorem in the exponential series case. 

General integral relations for plane incompressible boundary layer and wake/jet 
flows, and for quasicylindrical vortex and axisymmetric wake/jet flows were given. 
Substitution of the power series and exponential series approximations resulted in 
two distinct methods of computation. The power series method was found to 
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give good overall results (wall shear, displacement and momentum thicknesses), 
but it converges to incorrect detailed solutions. Computations with this method 
were often troublesome. 

The integral methods based on the exponential series approximation were found 
to give accurate, and apparently convergent, results. No computational problems 
were encountered with these methods except where the partial differential equa- 
tions were not appropriate anyway. On the basis of present experience it is felt 
that the exponential series integral method can be used as a reliable standard 
method for boundary layer computation. Low orders of approximation (IV = 1 
or 2) will give good engineering estimates at the expense of very little computer 
time, while higher orders of approximation (N = 3 to 5) yield solutions 
approaching the accuracy of finite difference methods at a possible saving in 
computing time. At present the programs are not optimized with respect to com- 
puting time. The velocity approximation (5) can be rewritten in a form where 
parameters remain constant in similar flows. Large gradients would be avoided, 
and computing times reduced. The integral methods presented require no itera- 
tions, and stability problems, if any, are limited to those of the routine used for 
integration of the ordinary differential equations. 
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